TABLE OF CONTENTS BOOK I

 

PART I

BASIC RANGE MEASUREMENTS

USING A MECHANICAL ROTARY CLOCK MODEL

 

PART II

L1 CLOCK SIGNAL TRANSMISSION,

RECEPTION, SYNCHRONIZATION & RANGE MEASUREMENT

WITH

MECHANICAL ROTARY CLOCK MODELS

 

APPENDIX I

FUNDAMENTALS OF CLOCKS

 

APPENDIX II

MECHANICAL  MULTI-DIAL ROTARY CLOCKS

AND A MULTI-DIAL MODEL GPS CLOCK

COMMENSURATE AND NON COMMENSURATE RATES

 

APPENDIX III

DIFFERENTIAL GEAR MECHANISMS

CLOCK RATE AND PHASE DIFFERENCES

RATE AND PHASE LOCKED DIALS

CYCLE SLIPPING

&

QUADRATURE PROCESSING


Book II Introduction.... 9

PART I. 11

Chapter 1  Fundamental Concepts of Distance Measurement using Synchronized Clocks   11

1.0 The Fundamental Process of measuring Distance. 11

1.1 Comments on the use of Models and the ICD-200 Document.. 11

1.2  Distance measurement by Time of Arrival Measurement.. 11

1.3 The physical process of Clock Synchronization.. 12

1.4  Magic Binoculars. 13

1.5 A Simple Light Pulse Transmitter and Receiver to Measure Distance. 14

1.6 Problems with the Simple Light Pulse Transmitter/Receiver System... 14

1.7 A New Clock Model. 17

1.8  A “Time Transfer” Linear Model. 18

1.9 Clock Synchronization.. 20

1.10  Time Transfer Linear Model with Receiver Clock Not Synchronized to Clocks A and B   20

1.11 A Master Clock.. 25

1.12 A “Second” Counting Dial for the Clock (Modified TOW) 28

1.13 Time Tag the Pictures. 28

1.14 The Subtle Problem of Delays at the Receiver.. 32

1.15  Extending Position Measurement to 3-D Space. 32

1.16 Summary of Chapter 1. 32

Chapter 2  Introduction to the Global Positioning System... 33

2.1 The Satellite System... 33

2.2  Physical Constants of a GPS Satellite Orbit that passes Directly Overhead.. 33

2.3 A Model For the GPS SV Clock System... 33

2.4   Calculating Tbias Using one SV, User Position Known.. 38

2.5 GPS Time Receiver using Master Clock & the Delay term Tatm... 38

2.6  Solving For User Position using four Satellites. 43

2.7  The Pseudo-Range. 44

2.8  A Simplified Model of the GPS Receiver.. 46

2.9  The Receiver Reference Oscillator (RRO) 47

2.10  Satellite Position Information.. 49

2.11  Summary.. 49

CHAPTER 3   GPS Signal Structure and Use. 50

3.1  A GPS SV TRANSMITTER MODEL. 50

3.1.1 Embeded Timing in the 50Hz Data. 51

3.1.2  BPSK Modulated Carrier. 54

3.1.3  The Reset Line. 54

3.2   Virtual Time Alignment.. 55

3.3  The C/A Code in GPS receivers. 55

3.4   Hidden Signals. 56

3.4.1  Data Hiding and Data Modulated Carrier Spectrum.. 59

3.5  Received Signal Power by User at Earths Surface. 59

3.6   P Code  Receivers. 59

3.7 GPS Data Structure Overview... 60

3.7.1 Using the Data to “Set” Replica Clock Dials in the Receiver. 63

3.8  The Doppler Problem... 64

3.9  Summary of Chapter 3. 67

4.0 CHAPTER 4 SOLVING FOR SV POSITION.. 68

4.1  SV Position.. 68

4.2 Coordinate System... 68

4.3  Multiple Clocks , One Master Clock and One time unit.. 68

4.3.1 The SV Clock Correction Terms. 69

4.3.2 The Ephemeris Time Reference variables toe and tk 72

4.3.3   Ephemeris Reference Time, toe 72

4.3.4   The Delta Time tk 72

4.3.5   Computing tk  for any given “time sent”. 75

4.3.6 Comments on the Time Scaling of toe and tk 75

4.4  GPS SV Orbit Description.. 75

4.4.1 Solving the Equations for SV Position and Speed. 75

4.4.2   Second and Third Order Correction Terms. 78

4.4.3  Some Comments On the Ephemeris Data and Solving for SV position. 78

4.4.4   Other SV Orbit Information, Almanac Data. 78

4.5   Age/Issue Of Data Terms. 79

4.6    toc SV Clock Reference Time. 86

4.7 Summary of Chapter 4. 86

5.0 CHAPTER 5 SOLVING FOR USER POSITION.. 87

5.1 Iteration vs. Direct Solution.. 87

5.2  Linear Approximation.. 87

5.3 The Pseudo Range Equations for Four SV.. 88

5.4 Forming the Nominal Pseudo-Range. 88

5.5   Forming the estimate of the Pseudo-Range to each SV.. 88

5.6    Resulting Linear Equation Set.. 89

5.5 Estimating the DPRi  Term... 89

5.6 Matrix Form of Solution.. 90

5.7 Flowchart, C code Program, Assumed Initial Position/User Clock Bias. 91

5.8 Testing for Solution.. 96

5.9 Geometry Considerations. 96

5.10 Converting User Position to Lat/Long/Altitude from ECEF Coordinates (Spherical Earth) 96

5.11 Corrections for Non Spherical Earth.. 96

5.12 Summary.. 97

PART II. 98

6.0  Chapter 6 GPS Receiver Hardware Fundamentals.. 98

6.1 Analog vs. Digital GPS Receivers. 98

6.1 Five Fundamental Steps in the GPS Receiver Hardware. 98

6.2    Block Diagram of  Shared Signal Processing for a Single Channel Receiver.. 101

6.2.1  Antenna. 101

6.2.2  Preamp. 102

6.2..3  Bandpass and Mixer stages up to 2nd IF.. 102

6.3.1   The Doppler Scan/Track  Subsystem.. 102

6.3.2  Second Mixer , LO2 and Doppler Scan/Track. 103

6.3.3  Correlator and C/A Code Scan/Track Subsystem.. 103

6.4 Signal Acquisition.. 104

6.4.1   C/A Code Clock Doppler. 104

6.4.3  Substantial time is needed to search for Code and Doppler lock. 104

6.4.4  Time can be reduced with prior knowledge. 105

6.4.5  Estimate of Signal Acquisition Time. 105

6.5 Data Demodulator.. 105

6.6 SV Replica Clock Block Diagram... 106

6.7.1  Recovering the Data Clock Phase (Setting The 20msec Dial). 109

6.7.2  Noise effects on Jitter of 50Hz Data. 109

6.8 Recovery of the Correct Phase of the 1 Second Dial. 110

6.10 Generating the SNAP_SHOT signal  (Receivers reference Clock) 113

6.11 Recording SV replica clock time at SNAP_SHOT instant.. 113

6.12 The Data record Method.. 113

6.13  Data Processing.. 116

6.14 Absence of AGC.. 116

6.15 Summary of Chapter 6. 116

7.0     Chapter 7 Functional Implementation of a GPS receiver.. 117

7.1  RF Conversion to 1st IF. 117

7.1.1 Antenna and Preamp. 117

7.1.2    1575MHz Bandpass Filter. 117

7.1.3     1st Mixer , 46MHz IF and Filter, IF Power Splitter. 118

7.2  Second Converter to 10.7Mhz IF. 121

7.2.1 Mixer and VCXO removes Doppler offset 121

7.2.2  10.7MHz BPF and Amp. 121

7.2.3  10.7MHz Correlator with Crystal Filter. 121

7.3  10.7 IF Processing using SA615. 122

7.3.2 Correlation Detection & Demod of Dither AM using RSSI 125

7.3.3 Quadrature Detection of 50Hz BPSK Data. 125

7.3.4  Limited 10.7 IF to Frequency counter. 125

7.4  Doppler Scan Track Subsystem... 126

7.4.1  Frequency counter Frequency Discriminator. 128

7.4.2  Center Frequency  Control 128

7.4.3  Digital Doppler Loop filter. 128

7.4.4  Level Detection & SCAN/TRAK.. 128

7.5  Code Tracker.. 129

7.5.1 Tau-Dither Code lock. 129

7.5.2  EXOR Detection of Code Error. 131

7.5.3 Active Band Pass Filter recovers Tau-Dither AM signal 131

7.5.4  Digital Filtering of Code Error Sign Bit 132

7.5.5  Code Clock Modulator. 135

7.5.6  C/A code Generator, SV Replica Clock , Phase State Counters & Latches. 136

7.5.7 An example of a C/A code Generator w/ Tau-Dither. 139

7.6 Signal Acquisition Process. 140

7.6.2  Detecting Code or Doppler Lock and Switching to Track. 142

7.7  Data Demodulator.. 143

7.7.2  50Hz Data  RESET’s the divide by 20 block. 146

7.8  Summary.. 146

PART III. 147

8.0             Chapter 8:  GPS Time and Frequency Reception.. 147

8.1    GPS Receiver in Time and Frequency, Rate and Phase Errors. 147

8.1.1    An Instrumentation Model of GPS Receiver Clock Rate and Phase Measurements. 147

8.1.2   Reported Rate and Phase Precision and Scale. 149

8.1.3    Corrected and Uncorrected Receiver Clocks. 150

8.1.4   Typical Receiver Reference Clock System and Rate Error Propagation. 150

8.2 Limits on Estimating Receiver Clock Rate Error, Clock Mode. 152

8.2.1 Estimating Predicted  Doppler error due to User Position Uncertainty. 152

8.2.3   L1 Carrier Tracking Jitter and Clock Rate Error. 155

8.2.4   Measuring Carrier Rate, Doppler and Receiver Clock Rate Error. 155

8.2.5   Estimating Receiver Clock Rate Error. 156

8.2.6   C/A Code Phase Measurements Limit Time precision in L1 Time Transfer (Clock Mode). 157

8.3 Initial Estimate of GPS Time. 158

8.3.1   SV to USER Signal Delay. 158

8.3.2    Estimating Path Delay. 159

8.4    Verifying the Veracity of Reported Receiver Clock Rate and Phase Errors. 162

8.5 Using A DDS based Receiver Clock to introduce precise Rate & Phase Errors. 164

8.6   GPS Disciplined Oscillators. 166

8.7  A Rate Corrected DDS  5/10MHz Reference based on any 10MHz Clock.. 168

8.8  Receiver Delays in GPS Time Transfer.. 171

8.9 Antenna Phase Center.. 174

8.10  Summary of  Chapter 8. 175

Chapter 9  The Zarlink 12 Channel GPS Receiver.. 176

9.1 The Zarlink GP2015 RF Downconverter.. 176

9.1.1 Triple conversion to 4.039MHz IF.. 176

9.1.2 Digital Sampling Creates IF@ 1.405MHz. 176

9.1.3 GP2015/GP2021 Clock Signals & Complex Mode. 177

9.1.4 The TIC Signal 180

9.2 ZarLink GP2021 12-Channel Baseband Processor.. 180

9.2.1 Single Channel Block Diagram.. 180

9.2.2 Doppler Offset Removal 180

9.2.4  C/A Code Clock Generator. 183

9.2.5   Prompt Channel , Early, Late and Dither Codes. 183

9.2.6 C/A Code Scanning ,Slewing. 183

9.2.7  Code Phase Counter and Code Clock Phase. 184

9.3 The 16-Bit Accumulators. 187

9.3.1 How do the 16-Bit Accumulators work?. 187

9.3.2  The DUMP Signal 187

9.3.3 Digital Accumulators as Integrators. 188

9.3.4 Approximating a Digital Accumulator as Analog Lowpass Filter. 188

9.4  An  Analog Model Of the Doppler Loop. 190

9.4.1 Assume VCO is exactly correct in Phase and Frequency. 190

9.4.3 Doppler , Code Scan & Threshold Detects. 193

9.4. 4 Doppler Acquisition and Track. 193

9.5  Analog Model Approximates Unlocked  Output Waveforms. 194

9.5.2 Case 2 Frequency  of VCO in error by 10Hz. 196

9.5.3 Case 3 VCO frequency Error is Zero, Small residual Phase Error. 196

9.5.4 Getting Code Lock using I&Q Data. 196

9.6 Getting Frequency Discriminator Information from I/Q Processing.. 197

9.6.1 Analytic Signal Interpretation of fd Sign Change. 199

9.7 Cycle Counting in the GP2021. 200

9.8 Summary of Chapter 9. 200

CHAPTER 10.. 201

Carrier Phase Measurements, Turbo Rogue Receiver.. 201

Chapter 10: Carrier Phase Measurements and Turbo Rogue Receivers. 201

10.1  A mechanical Clock Model of Carrier Phase Range Measurement.. 201

10.1.1 Observer sees pure Doppler and static Phase Offsets on Difference Clock Dial 201

10.1.2 Difference Clock Changes Direction of Rotation when Doppler Changes Sign. 201

10.1.3 Full Cycle Counting, Partial Cycles and Sign Issues. 202

10.1.4 Range Measurement using Full & Fraction Cycles of Diff. Dial, Integrated Doppler. 202

10.1.5 The Initial value of the Full Cycle Counter. 202

10.1.6 Practical Issues. 203

10.1.7 Cycle Slips. 203

10.2 L1 Carrier Loop Processing.. 205

10.2.2 Loop Opened, Input signal ( Fin ) is Constant, Loop Filter Input is Zero. 206

10.2.3 Loop Opened, Frequency ramp on Input Signal @ t1 206

10.2.4 df is an estimate of SV acceleration with respect to receiver (on LOS). 206

10.2.5 Loop filter is a weighted sum of acceleration and velocity terms. 206

10.2.5 All Digital Baseband Carrier Loop. 207

10.2.6 Typical Loop Up-Date Relationships. 208

10.2.7 Initial value of Sdf0 208

10.2.8  Slope of Accumulated Carrier Phase can be Reversed ( i.e. inverted plot). 208

10.2.10 Accumulated Phase is typically the total Phase. 209

10.2.12 Units of Accumulated Carrier Phase can be in cycles, counts, etc. 209

10.3 Using the L1 and L2 carrier phase dials to create a new Dial. 210

10.4 Analysis of the Measurement and use of Total Integrated Carrier Phase F(t) 212

10.4.1 Analysis of Total Integrated Carrier Phase and its Uses. 214

10.4.2 Derivation of Total Integrated Carrier Phase. 216

10.4.3 Differences and Ratios of  F(t)’s. 216

10.4.4  The Ratio of  F1(t) to F2(t). 216

10.4.5 Single Carrier Difference of F(t),  or DF(t). 218

10.4.6  Between Carrier Phase Differences, F1(t) - F2(t) ( ratios and single differences). 218

10.5 Time precision and Time resolution in the Turbo Rogue Receiver.. 220

10.5.1 Disturbances to Carrier Phase , An Overview.. 221

10.5.2 Turbo Rogue Time Resolution. 221

10.5.3 Turbo Rogue Time Precision. 222

10.5.4 Internally Generated Phase Noise in the Turbo Rogue Receiver. 222

10.5.5 A Base-Band Model of the Carrier Tracking Loop with Phase Quantization Noise As the Input 225

10.5.6 Estimates of Timing Jitter as seen by Carrier processing. 226

10.5.7 Summary Sampled Phase Analysis for Turbo Rogue Receiver. 228

10.6 Turbo Rogue L1 C/A Receiver.. 229

10.6.1 A Mechanical Clock Model of Turbo Rouge L1 C/A Channel Processing. 229

10.6.2 A totally Coherent design using 20.456MHz Master Oscillator. 229

10.6.3  Residual Carrier and Code Phase measurements. 230

10.6.4   Carrier Phase Dial and Chip Dial, Phase Rate measurements. 230

10.6.5   Clock Synchronizer. 230

10.6.6    Delay or Range delay Estimate  tC/A. 230

10.6.7 Code rate is tied to Carrier Rate. 233

10.6.8 20millsec Update Rate. 233

10.6.9 A Synthetic 20millsec dial Mechanical Model and the Time Tag. 233

10.6.10 Turbo Rogue Processor Block Diagram.. 235

10.6.11 Down Conversion and Sampling. 235

10.6.12 The Reference Clock. 235

10.6.13 Accumulator Start/Stop control, Processing. 235

10.6.14 Carrier Phase and Code & Chip Dials. 235

10.6.15 Absence of C/A Epoch Signal, 20millisec and 1-sec Counters or replica Dials. 236

10.6.16 C/A Code Generator. 236

10.6.17 Carrier Phase NCO Command is extracted from Total Integrated Carrier Phase. 236

10.6.18 Phase and Rate Steered Carrier Phase Loop. 237

10.6.19 Time Tag Information. 237

10.6.20 Turbo Rogue Receiver DSP Calculations, Performance Overview.. 239

10.6.21 Details of DSP Computations performed in the GP Processor. 240

10.6.22 The Counter Rotator term.. 241

APPENDIX A:   SLIDING CORRELATIORS, DELAY BASED DESCRIMINATORS AND PROCESSING GAIN with GPS APPLICATIONS.. 245

A.1 Time Averaging.. 245

A.2  Correlation, the Mathematical  Statement.. 249

A.3  A Multiplier and Integrator for Digital signals. 249

A.4  Time Shifting or sliding one waveform with respect to another.. 252

A.5  Correlation Pulse and A Delay Based Discriminator.. 252

A.6 The Error Voltage or Discriminator Output.. 256

A.7  Similarities to PLL. 256

A.8  RC time Constant.. 256

A.9  Tau Dither Discriminator.. 259

A.10  Carrier Based Sliding Correlator.. 259

A.11  A Carrier Based Tau- Dither Correlator/Desriminator.. 263

A.12  Processing Gain.. 264

A.13  Recovery of signal with Negative SNR.. 266

APPENDIX B:   PSEUDO RANDOM BINARY CODES AND THE C/A CODE GENERATOR.. 269

B.1  What is a PRN Code generator?. 269

B.2  A simple PRN Sequence Generator.. 269

B.3 Gold Codes. 269

B.4 THE C/A CODE Generator.. 272

B.5  Power Spectrum of a Carrier modulated with C/A code. 272

APPENDIX C:    BPSK MODULATORS  AND DEMODULATORS.. 279

C.1  BPSK Modulation /Demodulation Fundamentals. 279

C.2   Phase and Amplitude Imbalance. 279

C.2.1  Isolation. 280

C.2.3   Carrier Suppression. 283

C.3  Relative Merits of the BPSK Modulators. 283

C.3.1 Double Balanced Mixer. 283

C.3.2   Transformer (or Balun) /Switch. 287

C.3.3   EX OR Gate. 287

APPENDIX D:  SUBFRAME FORMAT... 289

APPENDIX E: GLOSSARY.... 295